Formulation of image fusion as a constrained least squares optimization problem.
نویسندگان
چکیده
Fusing a lower resolution color image with a higher resolution monochrome image is a common practice in medical imaging. By incorporating spatial context and/or improving the signal-to-noise ratio, it provides clinicians with a single frame of the most complete information for diagnosis. In this paper, image fusion is formulated as a convex optimization problem that avoids image decomposition and permits operations at the pixel level. This results in a highly efficient and embarrassingly parallelizable algorithm based on widely available robust and simple numerical methods that realizes the fused image as the global minimizer of the convex optimization problem.
منابع مشابه
Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملA support vector machine formulation to PCA analysis and its kernel version
In this paper, we present a simple and straightforward primal-dual support vector machine formulation to the problem of principal component analysis (PCA) in dual variables. By considering a mapping to a high-dimensional feature space and application of the kernel trick (Mercer theorem), kernel PCA is obtained as introduced by Scholkopf et al. (2002). While least squares support vector machine ...
متن کاملFinding a Global Optimal Solution for a Quadratically Constrained Fractional Quadratic Problem with Applications to the Regularized Total Least Squares
We consider the problem of minimizing a fractional quadratic problem involving the ratio of two indefinite quadratic functions, subject to a two sided quadratic form constraint. This formulation is motivated by the so-called Regularized Total Least Squares problem (RTLS). A key difficulty with this problem is its nonconvexity, and all current known methods to solve it are only guaranteed to con...
متن کاملExact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach
We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...
متن کاملThe Phase Problem: A Problem in Constrained Global Optimization
It is now almost 200 years since Gauss, a teenager at the time, formulated his famous principle of least-squares and used it to determine, for the first time, the orbit of one of the asteroids, a problem which had defeated astronomers for years. When applied to the crystallographic phase problem, least-squares leads directly to the formulation of the minimal principle, which effectively replace...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of medical imaging
دوره 4 1 شماره
صفحات -
تاریخ انتشار 2017